If $\sum\limits_{r = 0}^{25} {\left\{ {^{50}{C_r}.{\,^{50 - r}}{C_{25 - r}}} \right\} = K\left( {^{50}{C_{25}}} \right)} $, then $K$ is equal to
$(25)^2$
$2^{25} -1$
$2^{24}$
$2^{25}$
Statement $-1$: $\mathop \sum \limits_{r = 0}^n \left( {r + 1} \right)\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right) = \left( {n + 2} \right){2^{n - 1}}$
Statement $-2$:$\;\mathop \sum \limits_{r = 0}^n \left( {r + 1} \right)\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right){x^r}\; = {\left( {1 + x} \right)^n} + nx{\left( {1 + x} \right)^{n - 1}}$
Let $\left(\frac{n}{k}\right)=\frac{n !}{k !(n-k) !}$. Then the sum $\frac{1}{2^{10}} \sum \limits_{ k =0}^{10}\left(\frac{10}{ k }\right) k ^2$, lies in the interval
Let $n$ be an odd integer. If $\sin n\theta = \sum\limits_{r = 0}^n {{b_r}{{\sin }^r}\theta } $ for every value of $\theta $, then
If the sum of the coefficients of all even powers of $x$ in the product $\left(1+x+x^{2}+\ldots+x^{2 n}\right)\left(1-x+x^{2}-x^{3}+\ldots+x^{2 n}\right)$ is $61,$ then $\mathrm{n}$ is equal to
The coefficient of $x^8$ in the expansion of $(x-1) (x- 2) (x-3)...............(x-10)$ is :